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Abstract. The sea ice topography is essential for understanding the interactions within the air-ocean-ice system. Single-pass

interferometric synthetic aperture radar (InSAR) allows for the generation of digital elevation model (DEM) over the drift

sea ice. However, accurate sea ice DEMs (i.e., snow freeboard) derived from InSAR are impeded due to the radar signals

penetrating the snow and ice layers. This research introduces a novel methodology for retrieving sea ice DEMs using dual-

polarization interferometric SAR images, considering the variation in radar penetration bias across multiple ice types. The5

accuracy of the method is verified through photogrammetric measurements, demonstrating the derived DEM with a root-mean-

square error of 0.26m over a 200× 19km area. The method is further applied to broader regions in the Weddell and the Ross

Sea, offering new insights into the regional variations of sea ice topography in the Antarctic. We also characterize the non-

Gaussian statistical behavior of sea ice elevations using log-normal and exponential-normal distributions. The results suggest

that the exponential-normal distribution is superior in the thicker sea ice region (average elevation > 0.5m), whereas the two10

distributions exhibit similar performance in the thinner ice region (average elevation < 0.5m). These findings offer an in-depth

representation of sea ice elevation and roughness in the Weddell and Ross Sea, which can be conducted in time series data to

comprehend sea ice dynamics, including its growth and deformation.

1 Introduction

Sea ice topography refers to the ice shape, height, and large-scale roughness at the meter scale. It encompasses a variety of15

ice features, including rafted ice, ridges, rubble fields, and hummocks, all of which contribute to the intricate nature of sea

ice topography (Weeks and Ackley, 1986). The presence of snow cover atop the ice surface further influences the topographic

characteristics, adding another layer of complexity to the overall sea ice topography (Massom et al., 2001). Sea ice topography

can be described through digital elevation models (DEM). The DEM stands as an essential input into sea ice dynamic modeling,

important for determining the air-ice drag coefficient and momentum flux (Garbrecht et al., 2002; Castellani et al., 2014;20

Nghiem et al., 2022). Moreover, the DEM (i.e., snow freeboard), together with snow depth and the assumed values of snow,

ice, and seawater densities, enables the determination of sea ice thickness (Kwok and Kacimi, 2018). This estimation is crucial

in assessing the impacts of climate change on sea ice dynamics. Furthermore, mapping sea ice topography is paramount for

safe navigation in polar oceans. By providing information on ice deformation and identifying safe routes, accurate sea ice
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topography maps contribute to ensuring the safety and efficiency of ship navigation in challenging environments (Dammann25

et al., 2017).

Sea ice elevation has been measured using laser altimeter mounted on different platforms, including helicopters (Dierking,

1995), aircraft such as IceBridge (Petty et al., 2016), and satellites like ICESat-1 (Zwally et al., 2008) and ICESat-2 (Kacimi and

Kwok, 2020). These laser altimeters provide high-spatial resolution (< 1m) in measuring sea ice elevation. However, limited

spatial coverage and long revisit times (e.g., 91 days for ICESat-2) restrict their capacity for consistent and comprehensive sea30

ice monitoring. In recent decades, synthetic aperture radar (SAR) has been of significant importance for Earth observation,

offering a balance between spatial resolution (meters to tens of meters) and swath coverage (tens to hundreds of kilometers).

SAR is unaffected by weather conditions or daylight limitations, enabling consistent data acquisition with a revisit time of

around ten days. Notably, the advent of single-pass interferometric SAR (InSAR) sensors, exemplified by TanDEM-X, presents

an unprecedented opportunity to generate sea ice DEMs for drift (Dierking et al., 2017) and landfast (Yitayew et al., 2018) sea35

ice.

Nevertheless, the InSAR-derived DEM can be affected by the microwave penetration into the snow and ice layers. Dry snow

can have penetration depths up to hundreds of wavelengths (Guneriussen et al., 2001). For X-band SAR, the penetration into

younger ice, such as new and first-year ice, is minimal due to the high salinity of the ice surface (Hallikainen and Winebrenner,

1992). On the other hand, for older and desalinated ice, such as multi-year ice, the penetration depth varies from 0− 1m de-40

pending on the temperature and salinity (Hallikainen and Winebrenner, 1992; Huang et al., 2021). To account for the scattering

mechanism from the volumes (snow and ice) and layers (snow-ice-water interfaces), a two-layer-plus-volume (TLPV) model

(Huang et al., 2021) has been developed to determine the penetration depth over snow-covered old ice in the Antarctic. The

model improves the precision of sea ice topographic mapping by offsetting the InSAR phase center to the top surface.

SAR polarimetry complements interferometry by providing valuable insights into scattering processes and has proven useful45

for characterizing sea ice properties (Winebrenner et al., 1995; Ressel et al., 2016; Singha et al., 2018). For old and deformed

ice, a radar theory has been developed to examine the relationship between scattering mechanisms and sea ice DEM (Nghiem

et al., 2022), resulting in a geophysical model function based on co-polarimetric coherence for retrieving sea ice DEM (Huang

et al., 2022). These findings emphasize the significance of integrating polarimetric and interferometric information for precise

sea ice topography mapping using SAR imagery.50

Given the variations in the microwaves’ penetration depth into snow and ice, deriving sea ice DEM from SAR imagery over a

broad spatial scale encompassing diverse ice types is still constrained. In this study, we develop an innovative two-step method

to generate sea ice DEM across multiple ice types using machine learning and polarimetric-interferometry SAR techniques.

The initial step involves the development of a random forest classifier using specific SAR features to categorize sea ice into

two groups: younger ice (YI) and older ice (OI), based on the penetration depth of microwaves. Subsequently, a sea ice DEM55

is created for each ice type. In the case of YI, standard InSAR processing is applied to determine the elevation. For OI, a novel

inversion algorithm is proposed to estimate the parameters of the developed TLPV model (Huang et al., 2021). This allows

for correcting penetration bias in the InSAR signal over OI, resulting in a precise sea ice DEM. We validate the proposed

method against the photogrammetric DEM from the IceBridge aircraft. A root-mean-square error (RMSE) of 0.26m between
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the derived DEM and reference data signifies a precise elevation mapping for both YI and OI. Throughout the paper, “sea ice60

elevation" is the entire vertical height (including snow depth) above the local sea surface.

We further implement the proposed two-step approach to 162 SAR images covering 12 segments (each covering an area

of ∼ 500× 20km) in the Weddell and Ross Sea. This allows a broad mapping of sea ice elevation and roughness, offering

new insights into the topographic patterns of sea ice at a large spatial scale. Note that the roughness in this study refers to

the macroscale roughness, which is defined as the standard deviation of elevation within 50× 50m window. We analyze the65

variation in sea ice elevation and roughness along the southwards direction and associate it with the variation in sea ice classes

obtained from the Ice Chart. The statistics of sea ice elevations over various regions are modeled using the log-normal and

exponential-modified normal distributions. The findings enhance our understanding of sea ice formation and dynamics and can

be used to interpret geophysical parameters associated with sea ice topography.

The paper is structured as follows. Section 2 describes the data sets and data processing procedures. The two-step approach70

for sea ice DEM retrieval is introduced in Sect. 3. The retrieval results and interpretation of topographic characteristics are

discussed in Sect. 4. Finally, Section 5 concludes the study.

2 Data sets and processing

2.1 Study area

The region of interest includes both the Weddell Sea and the Ross Sea, as shown in Fig. 1. The SAR footprints over the two75

seas are zoomed-in in boxes A and B, respectively. The footprints comprise 12 segments, each corresponding to a sequence

of SAR acquisitions at almost the same time stamp. The segments will be referred to as W1-U, W1-L, W2-U, W2-L, W3-U,

W3-L, W4, W5-U, W5-L, R1-U, R1-L, and R5 in the following sections for conciseness.

2.2 SAR Imagery

The TanDEM-X is a SAR interferometer that operates as a bistatic single-pass system, capable of acquiring two images simul-80

taneously (Krieger et al., 2007). The two images are co-registered single-look complex products, which can be processed to

derive sea ice DEM through interferometry.

In the study, we collected 162 SAR images over the twelve segments in StripMap mode in dual-pol channels (HH and VV).

The pixel spacing is around 0.9m× 2.7m in slant range and azimuth. The acquisition time and the number of images for each

segment are listed in Table 1. The incidence angle (InA) is measured at the center of the scene, and the height of ambiguity85

(HoA) corresponds to an interferometric phase change of 2π.

The multilooking processing was conducted using a 4× 12 window, resulting in a ∼ 10× 10m pixel spacing in azimuth

and range. The backscattering intensity σmeasure of the images includes additive thermal noise, which can be described by

the noise equivalent sigma zero (NESZ) and assumed to be uncorrelated with the signal (Nghiem et al., 1995). We denoised

backscattering intensities for the different polarizations (i.e., HH, VV, Pauli-1 (HH+VV), and Pauli-2 (HH-VV)) by subtracting90
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Figure 1. Geolocation of the study area. The northernmost positions in each segment are marked with star symbols and serve as reference

points for calculating the relative distance in Sec. 4.2.

the noise equivalent sigma zero (NESZ) from the σmeasure (Huang et al., 2022). These denoised intensities are used in the

following sections.

2.3 Optical Digital Mapping System (DMS) data

With an objective to investigate Antarctic sea ice topography, Operation IceBridge (OIB) and TanDEM-X Antarctic Science

Campaign (OTASC) (Nghiem et al., 2018) was successfully carried out along a portion of the W1, shown in Fig. 2a. Equipped95

with a digital mapping system (DMS), the OIB aircraft captured optical images (Dominguez, 2010, updated 2018) and gen-

erated DEM using photogrammetric techniques at a spatial resolution of approximately 40cm× 40cm (Dotson and Arvesen.,

2012, updated 2014). The DMS acquisitions occurred between 17:45 and 18:44 UTC on October 29, 2017. Figure 2b and c

showcase DMS optical images over specific areas, highlighting a diverse range of sea ice features, including ridges, deformed

ice, smooth ice with snow cover, and snow-free ice.100
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Table 1. Summary of SAR acquisitions and Ice Charts over the study area.

Segment
Number of

SAR images

SAR

acquisition time
HoA(m) InA(◦)

Weekly average

Ice Charts

(starting date)

W1-L 20 2017-10-24T23:30 30− 35 29 2017-10-19

W1-U 13 2017-10-29T23:41 33− 35 35 2017-10-26

W2-L 19 2017-10-25T23:13 30− 35 29 2017-10-19

W2-U 12 2017-10-30T23:23 32− 34 35 2017-10-26

W3-L 18 2017-10-26T22:56 30− 35 29 2017-10-26

W3-U 8 2017-11-22T23:05 36− 37 35 2017-11-16

W4 12 2017-11-01T22:49 32− 34 35 2017-10-26

W5-L 18 2017-11-02T22:30 30− 34 29 2017-11-02

W5-U 15 2017-10-27T22:41 31− 34 35 2017-10-26

R1-L 12 2017-11-11T07:16 33− 35 31 2017-11-09

R1-U 6 2017-10-25T07:25 34− 35 36 2017-10-19

R5 9 2017-11-07T09:58 40− 42 35 2017-11-02

Figure 2. (a) Geolocation of DMS measurements superimposed on four SAR footprints in segment W1-U. Zoomed-in views of DMS digital

images at points A and B (green dots) are displayed in (b) and (c), respectively.
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Table 2. Stage of develops for ice type categories (U.S. National Ice Center., 2020).

Ice Stage of development Thickness (cm) Ice type

New ice

Nilas, ice rind

Young ice

Gray ice

Gray-white ice

< 10

< 10

10−< 30

10−< 15

15−< 30

Thin ice (TI)

FYI

Thin FYI

Medium FYI

Thick FYI

≥ 30− 200

30−< 70

70−< 120

≥ 120

First-year ice (FYI)

Old ice

2nd year ice

multiyear ice

N/A Multiyear ice (MYI)

In this study, we geocoded the DMS DEM to match the same coordinates and resolution as the multilooked SAR image,

which is approximately 10× 10m in both range and azimuth. The calibration of the DMS DEM to the local sea level was

accomplished through a manual process involving the selection of the water surface from DMS images (Huang et al., 2021).

As the sea ice is constantly moving, co-registration is crucial to compensate for the time lag (∼ 6 hours) between the DMS

sensor and TanDEM-X. To achieve this, we carefully aligned the two data by identifying distinctive sea ice features in both105

optical and SAR images (Huang et al., 2021, 2022). The co-registered DMS DEM is used as reference data in this study.

2.4 Ice Charts

Weekly sea ice concentration charts (referred to as Ice Charts hereafter) represent the average stage of development along

with respective concentrations over a 7-day period (U.S. National Ice Center., 2020). The Ice Charts covering the date of SAR

acquisitions are listed in Table 1.110

The Ice Charts are provided in Shapefile format as grids with a spatial resolution of 10× 10km. For each specified latitude

and longitude, three ice concentration values are given, each corresponding to a different stage of ice development. Details

of these stages and their corresponding thicknesses can be found in the first and second columns of Table 2, respectively. The

postprocessing of the Ice Charts consists of two steps. First, we categorized the three stages of ice into thin ice (TI), first-year

ice (FYI), and multiyear ice (MYI) types according to the third column of Table 2. Next, we calculated the average ice type by115
∑3

i=1 ICi×ITi, where ICi denotes the ice concentration value and ITi stands for the ice type index for each stage i. Ice-type

indices (ITi) are assigned as 0 for TI, 1 for FYI, and 2 for MYI.
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2.5 SAR interferometry

Single-pass interferometer acquires two simultaneous observations, denoted as s1 and s2. The complex interferogram γ and

the interferometric phase ϕγ can be described as (Cloude, 2010)120

γ = s1s
∗
2 (1)

ϕγ = arg{s1s
∗
2} (2)

The further processing of ϕγ includes flat earth removal, interferogram filtering, low-coherence area mask, and phase un-

wrapping (Huang and Hajnsek, 2021). The resulting ϕ
′
γ is converted to height by125

hInSAR = ha

ϕ
′
γ

2π
(3)

where hInSAR is the height of InSAR phase center and ha is the HoA related to the InSAR baseline configuration provided in

Table 1.

The complex interferometric coherence γ̃InSAR between the two images can be estimated by (Cloude, 2010)

γ̃InSAR = γInSAR · eiϕγ =
< s1s

∗
2 >√

< s1s∗1 >< s2s∗2 >
(4)130

where the symbol < . > denotes an ensemble average within a 4× 12 multilooking window. Pixels with γInSAR < 0.3 were

designated as water areas and excluded from further processing. The above interferometric processing was carried out using

the GAMMA software.

2.6 SAR polarimetry

SAR Polarimetry reflects scattering mechanisms and has been proven as a proxy for characterizing sea ice properties (Wak-135

abayashi et al., 2004; Ressel et al., 2016; Huang and Hajnsek, 2021; Singha et al., 2018; Nghiem et al., 2022).

2.6.1 Co-polarization ratio

The co-polarization (coPol) ratio (RcoPol) measures the backscattering intensity ratio between the dual-pol channels and can

be calculated as follows

RcoPol =
σHH

σVV
(5)140

where σHH and σVV are denoised SAR backscattering intensity in dual-pol channels in linear scale. RcoPol related to the

dielectric constant, has been considered as an indicator for ice thickness (Wakabayashi et al., 2004). Additionally, RcoPol has

been identified as an important feature for discriminating thicker ice and water and is an effective tool for classifying sea ice in

X-band SAR imagery (Ressel et al., 2016).
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2.6.2 Pauli-polarization ratio145

Similarly, we can obtain the Pauli-polarization ratio (Rpauli) by

RPauli =
σP1

σP2
(6)

where σP1 and σP2 are denoised SAR backscattering intensity in Pauli-1 and Pauli-2 polarizations in linear scale, respectively.

2.6.3 Complex coPol coherence

The complex coPol correlation γ̃coPol is calculated as (Lee and Pottier, 2009)150

γ̃coPol = γcoPol · eiϕcoPol =
< sVVs∗HH >√

< sVVs∗VV >< sHHs∗HH >
(7)

where γcoPol is the coPol coherence magnitude and ϕcoPol is the coPol phase. sHH and sVV are single-look complex images in

dual-pol channels, respectively.

γcoPol measures the degree of electromagnetic wave depolarization caused by the surface roughness and the volume scat-

tering. This parameter has been shown to be associated with sea ice elevation (Huang and Hajnsek, 2021) and thickness (Kim155

et al., 2011). ϕcoPol is sensitive to the anisotropic structure of the medium and deviates from 0◦ when the signal delay becomes

polarization dependent (Leinss et al., 2014). ϕcoPol has been utilized in retrieving fresh-snow anisotropy over ground (Leinss

et al., 2016) and characterizing the topography of snow layer (Huang and Hajnsek, 2021).

3 Methodology

This section introduces an innovative approach for retrieving sea ice elevation across various ice conditions, shown in Fig. 3.160

The initial step is categorizing sea ice into OI and YI types based on radar penetration depths. The second step involves

generating the sea ice DEM using different methods for the two sea ice categories. The two steps are detailed in Sect. 3.1 and

Sect. 3.2, respectively. The method is developed and validated using the four SAR images overlapped with DMS DEM, see

Fig. 2.

3.1 Sea ice classification165

The random forest (RF) classifier (Breiman, 2001) is implemented to categorize sea ice, shown in Fig. 4, where SAR images and

DMS DEM (hDMS) are utilized as inputs into the proposed flowchart (Fig. 4). The penetration depth hpene = hDMS−hInSAR,

where hDMS measures the elevation from the snow-air surface relative to the seawater. InSAR DEM (hInSAR) measures the

elevation of the InSAR phase center, which can be somewhere inside of the snow or ice, depending on the snow and ice

condition. hInSAR is generated from TanDEM-X InSAR pair following the principles in Sect. 2.5. In general, microwaves can170

penetrate much shallower into the younger and more saline compared to the older and less saline sea ice (Hallikainen and

Winebrenner, 1992). Hence, pixels with hpene < 0.3m are labeled as YI, whereas those with hpene ≤ 0.3m are OI.
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Figure 3. The proposed two-step approach for sea ice DEM retrieval. The details of the sea ice classifier and the PolInSAR height retrieval

module are illustrated in Fig. 4 and 7, respectively.

Figure 4. Flowchart for sea ice classification.
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Figure 5. Gini importance computed from the Random Forest (RF) classifier.

We investigate a range of features for classification, including denoised backscattering intensity in HH polarization (σHH),

polarimetric features such as coPol ratio (RcoPol), Pauli-polarization ratio (RPauli), coPol coherence magnitude (γcoPol), and

coPol phase (ϕcoPol), as well as interferometric features including InSAR coherence magnitude (γInSAR) and height of inter-175

ferometric phase center (hInSAR). To improve computational performance, we rank features based on Gini Importance (i.e.,

Mean Decrease in Impurity), which measures the average gain of purity by splits of a given variable. The ranking of the fea-

tures is illustrated in Fig. 5, where the top five features, i.e., RPauli, σHH, hInSAR, γcoPol, and γInSAR are selected as effective

predictors for the RF classifier.

The selected features together with the ice labels (i.e., OI and YI) form the sample set. 75% is used for training the RF classi-180

fier, implemented in Python using default hyperparameters. Since sample numbers for the YI and OI classes are well-balanced

(48% and 52%, respectively), no balanced training strategy is particularly implemented. The validation of ice classification

over the testing subset (25%) will be given in Sect. 4.1.

3.2 DEM generation

Based on the classification map, we separately retrieve the sea ice elevations for the two categories of ice. For YI, the conven-185

tional InSAR processing (Section 2.5) is conducted, given the minimal penetration depth attributed to the saline ice. On the

other hand, for OI which is subject to radar signal penetration, we apply the TLPV model developed in (Huang et al., 2021),

which incorporates InSAR processing and corrects for the radar penetration bias into the snow-covered old ice. The TLPV

model includes surface scattering from the top and bottom interfaces and volumes scattering from the snow and ice, shown in

Fig. 6. The model was further simplified by merging the contributions of the snow volume, the ice volume, and the top layer190
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Figure 6. The schematic of the proposed TLPV model for sea ice (Huang et al., 2021).

into one Dirac delta (Huang et al., 2021):

γ̃InSAR

≈ eiϕ0
1 · eiϕ1 + m · eiϕ2

1 +m

= eiϕ0 γ̃mod(m,z1,z2)

= eiϕ0 γ̃mod(m,z1,hv)

(8)

where ϕ0 is the topographic phase at the snow-air interface, m refers to the layer-to-layer ratio, ϕ1 = κz_volz1, ϕ2 = κz_volz2,

z1 and z2 are the locations of the layers, respectively. hv = z1−z2 refers to the depth between the top and bottom layer. κz_vol

is the vertical wavenumber in the volume which depends on the InSAR configuration such as HoA and the incidence angle,195

and the dielectric constant of the volume (Dall, 2007; Sharma et al., 2012; Huang et al., 2021).

The aim is to estimate ϕ0 and convert it into height (hmod). When fixing the origin at the air-snow interface, z1 is equivalent

to snow depth, which can be obtained from the AMSR Level-3 data (Meier, W. N., T. Markus, and J. C. Comiso, 2018).

However, Eq. (8) still contains two unknown variables, m and hv , preventing direct estimation of ϕ0.

To address the above issue, we develop a new algorithm to invert the TLPV model and estimate m and hv from SAR200

observations using RF regression, illustrated in Fig. 7. The RF regressor is trained using the same sample set as the sea ice

classification. hDMS can be transformed into ϕDMS by Eq. (3) and input as a priori information. With the above specific

parameters, m and hv values can be derived by inverting Eq. (8).

We also use Gini Importance to rank the seven features for regression, selecting the top five predictors for estimating m and

hv: σHH, hInSAR, γInSAR, RPauli, and ϕcoPol, shown in Fig. 8. The selected features, together with the derived m and hv , form205

the sample set that is partitioned into training (75%) and testing subsets (25%).

The selected features from InSAR observations, along with z1 from ancillary data, are input into the well-trained RF regres-

sion model to estimate m̂ and ĥv over the testing set. Then the topographic phase ϕ̂0 can be derived by solving Eq. (8), and
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Figure 7. PolInSAR height retrieval module.

tranformed into elevation hmod by Eq. (3). The validation of height retrieval accuracy over the testing subset (25%) will be

given in the next section.210

4 Results

Following the two-step approach developed in Sect. 3, this section obtains the SAR-derived DEM from 162 dual-pol InSAR

pairs that cover the sea ice in the Weddell and Ross Seas. We verify the accuracy of the SAR-derived DEM. We further analyze

the variation of elevation and roughness along the southward direction and examine the statistical characteristics of sea ice

elevation across various geographic regions.215

4.1 Sea ice topography retrieval and validation

The proposed two-step approach for sea ice elevation retrieval is visually and quantitatively validated based on the four scenes

overlapped with DMS measurements. The SAR backscattering intensities over the four scenes are displayed in the left column

in Fig. 9. In the first step, the proposed classification scheme (Fig. 4) demonstrates good performance on the testing set, with

an accuracy of 0.84 and a confusion matrix presented in Fig. 10(a). The classifier is then applied to the entire SAR images,220

including the region not overlapped by DMS DEM, and the classified maps are shown in the middle column of Fig. 9.

In the second step, the sea ice DEM (hmod_SAR) is obtained by merging hmod and hInSAR over OI and YI. The retrieved

sea ice elevations are compared with hDMS over the testing set, shown in Fig. 10(b). The RMSE between hInSAR and hDMS is
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Figure 8. Gini importance computed from the Random Forest (RF) regressor for estimating m and hv .

0.18m, demonstrating good accuracy of applying conventional InSAR processing to retrieve sea ice DEM for YI. Regarding

OI, the proposed PolInSAR height retrieval module effectively compensates for the penetration bias, resulting in an RMSE225

of 0.25m between hmod and hDMS. Note that the average RMSE value of OI without compensating the penetration bias is

∼ 1.10m (Huang et al., 2021). When considering both types of ice, the RMSE between hmod_SAR and hDMS is 0.26m. This

result is promising as Dierking et al. (2017) suggested the satisfactory accuracy for a sea ice DEM being less than 0.3m.

The hmod_SAR over the entire SAR images are displayed in the right column of Fig. 9. For each scene, the white dash line

delineates a 50km× 100m strip overlapped with DMS DEM. By extracting the values at the center of the strip, the height230

profiles are presented in Fig. 11, where hmod_SAR performs good agreement with the reference data (hDMS) and well capture

the topographic variation. Considering that hDMS already contains an uncertainty of 0.2m (Dotson and Arvesen., 2012, updated

2014), these results prove the effectiveness of the proposed two-step approach for sea ice DEM retrieval over both YI and OI.

4.2 Sea ice topography along the southwards direction

We obtain sea ice DEM over the 162 images using the two-step approach, shown in Fig. 12. The derived DEM is downsampled235

to a resolution of 500m, utilized in the subsequent analyses.

The northernmost location on each segment is selected and marked in Fig. 12. Subsequently, we characterize the variation

of sea ice category, elevation, and roughness moving southward, using distances relative to the northernmost locations and
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Figure 9. (a) SAR backscattering intensity in HH polarization, (b) sea ice classification, and (c) sea ice DEM (hmod_SAR) over the four

scenarios. Each row corresponds to Scene No.1-4 in Fig. 2, respectively. The white dashed line indicates the flight track overlapped by the

DEM DEM (hDMS).
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Figure 10. (a) Confusion matrix for sea ice classification. (b) Comparison between the reference height and the derived height over OI and

YI.

averaging over every 100km interval. These topographic variations along the distance are illustrated in Fig. 13- 15. The first

column shows the OI percentages estimated from the proposed two-step approach and compared with the Ice Charts, which are240

used as the reference. For instance, the average ice type of the W1-U segment is MYI within the 0− 160km range, matching

the estimated around 58% OI from our method. FYI becomes dominant from 160− 320km, aligning with a decrease in OI

percentage. Beyond 320km, MYI dominates again, consistent with an increase in the estimated OI percentage.

The overall trend of estimated OI percentages aligns well with the Ice Charts across most segments (W1-U, W1-L, W2-U,

W4, W5-U, W5-L, and R5). For other segments, some discrepancies exist, which can be attributed to the differences in spatial245

resolution and temporal gap between the Ice Charts and SAR imagery, considering the dynamic nature of sea ice. It should be

emphasized that the proposed method classifies ice based on electromagnetic wave penetration into snow and ice, which may

have differences when compared with the conventional ice types in Ice Charts.

The second and third columns in Fig. 13- 15 display the distance dependency of ice elevation (hmodSAR ) and roughness (σR),

respectively. Sea ice roughness is the standard deviation of the elevation within a 50× 50m area. For each 100km-distance250

interval, we calculate and display the average and median values, as well as the first and third quartiles of hmodSAR and σR

using boxplots.

The Ice Charts are also used to validate and explain the topographic variation of sea ice. In general, the region with thicker

ice (e.g., MYI) is anticipated to display higher elevation or larger roughness compared to the area with thinner ice, such as

FYI and TI. This hypothesis is substantiated by the agreement between topographical variations (elevation and roughness) and255

ice types observed in Fig. 13 to 15 across most segments, with the exception of W3-L and W5-L. The sea ice is identified

as MYI between 450− 750km in W3-L and 650− 1000km in W5-L. However, neither elevation nor roughness significantly

increases within these specific ranges. Minor discrepancies also persist, for instance, in W1-U and W2-L, where there is no

clear reduction in either elevation or roughness when FYI is present at 600km. Considering that the Ice Charts data are weekly

average, the inconsistencies could be attributed to mis-coregistration caused by sea ice drift during the time lag between the260

Ice Charts data and the SAR images.
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Figure 11. Comparison between the elevation profiles (hmod_SAR) from the proposed method and the DMS DEM (hDMS) along the dotted

line (from A to B) over Scene No.1-4 in Fig. 9(c).
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Figure 12. Sea ice DEM (hmod_SAR) over (a) the Weddell Sea and (b) the Ross Sea retrieved from SAR images. The northernmost locations

on each segment are marked with star symbols and serve as reference points for calculating the relative distance.

In the northwestern Weddell Sea, we observe that the sea ice near the Antarctic Peninsula (AP) in the W1-U and W2-U

segments exhibits the highest average elevation (mean > 0.7m) and roughness (mean 0.19m), shown in the first and third

rows in Fig. 13. This observation aligns with a previous study using OIB Airborne Topographic Mapper (ATM) data from

November 14 and 22, 2017 (Wang et al., 2020), which has reported that the snow freeboard near the eastern AP ranges from265

1.5− 2.5m. Moving outwards from the AP, the sea ice elevation and roughness along W1-U and W2-U demonstrate a sharp

decrease within approximately 0− 200km before gradually increasing as it heads southward. Similar trends are observed in

W3-U (first row in Fig. 14) and W5-U (first row in Fig. 15), with a more subtle decrease in elevation and roughness within

the 0− 200km range, compared to W1-U and W2-U, followed by a southward increase. Conversely, in the initial 0− 200km

of W4 (third row in Fig. 14), there’s no observed decrease in elevation or roughness. Instead, a gradual increase in both270

parameters is evident as one moves southward, consistent with the dominance of MYI beyond 100km from the Ice Charts

data. In the southeastern region, segments W1-L, W2-L, W3-L, and W5-L exhibit similar patterns in the topographic variation,

with elevation and roughness generally decreasing towards the south as they approach the Coats Land. This trend can be

explained by the increasing occurrence of FYI or TI beyond ∼ 1200km from the Ice Charts data.

The observed variation in sea ice topography can result from the formation and dynamics of sea ice in the East Weddell275

(E-Wedd) and West Weddell (W-Wedd) regions, which are defined by specific longitude ranges: E-Wedd encompasses 15◦E to

40◦W, while W-Wedd extends from 40◦W to 62◦W. Segments of W1-U, W2-U, W3-U, W4, and W5-U are located within the
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Figure 13. Sea ice characteristics along the southwards direction along W1 and W2 segments. The blue line in the first column displays

the OI percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the elevation (hmod_SAR) and roughness (σR), respectively. Distance is measured from the northernmost SAR image reference

point towards the south. The orange line denotes the average values of hmodSAR and σR. The box’s upper and lower boundaries represent

the first (Q1) and third (Q3) quartiles, while the upper (lower) whisker extends to the last (first) sample outside of Q3 ±1.5×(Q3-Q1).
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Figure 14. Sea ice characteristics along the southwards direction along W3, W4, and R5 segments. The blue line in the first column displays

the OI percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third

columns plot the elevation (hmod_SAR) and roughness (σR), respectively.
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Figure 15. Sea ice characteristics along the southwards direction along W5 and R1 segments. The blue line in the first column displays the OI

percentages derived from SAR images, and the blue dot indicates the ice types obtained from the Ice Charts. The second and third columns

plot the elevation (hmod_SAR) and roughness (σR), respectively.
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W-Wedd, which has been reported for the presence of MYI in the Antarctic (Lange and Eicken, 1991). Sea ice initially forms

in the eastern region and then circulates clockwise within the cyclonic gyre of the southern Weddell Sea. Later, older sea ice

drifts outward northwestern (Kacimi and Kwok, 2020). The sea ice undergoes thickening and deformation as it drifts (Vernet280

et al., 2019; Kacimi and Kwok, 2020), resulting in increased elevation and greater roughness in the northwestern Weddell Sea.

In the Western Ross Sea, the sea ice in the R5 segment (last row in Fig. 14) exhibits greater elevation and roughness near

Terra Nova Bay, with decreasing southeastward. This observation aligns with the evolution of ice types from MTI to TI in

that direction. This observation is also consistent with recent research (Rack et al., 2021), where airborne measurements in

November 2017 revealed deformed sea ice exceeding 10m in thickness within the first 100km south of Terra Nova Bay, and285

thinner ice was observed towards the southeastern area near McMurdo Sound (see Fig. 12b for the location). Satellite data

also confirmed a region of thinner ice influenced by the Ross Sea Polynya, with thicker ice located westward (Kurtz and

Markus, 2012). The observed pattern can be attributed to significant deformation in the Western Ross Sea caused by wind-

driven shearing, rafting, and ridging within a convergent sea ice regime (Hollands and Dierking, 2016). This deformation leads

to potentially thicker sea ice compared to the eastern part (Rack et al., 2021).290

For the R1 segment located in the Eastern Ross Sea (third and fourth rows in Fig. 15), although the sea ice exhibits rela-

tively stable elevation, which agrees with the consistent presence of predominantly FYI, the roughness decreases towards the

southeastern. This may be attributed to the influence of ocean circulation, considering that the R1 segment is situated farther

from the land than the other segments. The variation of the roughness along the R1 segment also highlights the importance of

combining topographic mapping with ice category mapping to comprehensively characterize sea ice features.295

4.3 Regional variation of sea ice topography

Figure 16(a) displays the topographic variation across different segments. We present the average and median values, as well as

the first and third quartiles of elevation and roughness using boxplots. The mean values are listed in Table 3. Additionally, the

percentages of the three ice types within each segment, calculated from the Ice Charts for reference, are presented in Fig. 16(b).

Generally, sea ice in the northwestern Weddell Sea (W1-U, W2-U, W3-U, W4, W5-U) exhibits higher average elevations300

(> 0.5m) compared to that in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-U, R1-L, R5),

see detailed values in Table 3. W1-U and W2-U exhibit the highest average elevations of 0.8m and 0.72m, respectively, along

with the largest average roughness of 0.19m. This is comparable with the snow freeboard retrieved from ICESat-2 (Kacimi

and Kwok, 2020), reporting an average of 0.6− 0.7m snow freeboard nearby the Eastern AP between April 1 and November

16, 2019. W4 and W5-U show average elevations of 0.57m and 0.52m, and average roughness values of 0.18m and 0.16m,305

respectively. The above topographic values (i.e., elevation and roughness) are consistent with the ice types presented in Fig.

16(b), where W1-U, W2-U, W4, and W5-U exhibit a substantial proportion (> 57%) of MYI, known for greater elevation

and roughness characteristics. W3-U, which consists of 58% MYI, exhibits an elevation of 0.50m but with relatively lower

roughness at 0.11m, suggesting the possibility of a smooth snow-air interface over older and thicker ice.

For the segments in the southeastern Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-L, and R5), the average310

sea ice elevation remains below 0.46m and roughness around 0.11m. The reduced average elevation and roughness correspond
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Figure 16. (a) Sea ice elevation (hmod_SAR) and roughness (σR) derived from SAR images across the 12 segments. (b) The percentage of

multi-year ice (MYI), first-year ice (FYI), and thin ice (TI) from the Ice Charts. (c) Probability density function (PDF) of derived sea ice

elevation (hmodSAR) and their fits to the exponential-normal, log-normal, and normal distributions.

to ice types with fewer MYI percentages (<∼ 50%) and greater amounts of FYI and TI (>∼ 50%). R1-U demonstrates an

average sea ice elevation of 0.49m and roughness of 0.18m, with the presence of predominantly FYI throughout the region.

This observation suggests a plausible scenario of a rougher snow-air interface over younger and thinner ice (Tin and Jeffries,

2001; Tian et al., 2020).315
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Table 3. Average elevation and roughness for each segment, as well as the Kolmogorov-Smirnov (KS) values between the observed elevations

and modeled distributions (i.e., exponential normal and log-normal). The smaller KS value is in bold.

segment
Mean

elevation (m)

Mean

roughness (m)
KS exp-normal KS log-normal

W1-U 0.80 0.19 0.083 0.106

W1-L 0.46 0.12 0.064 0.05

W2-U 0.72 0.19 0.052 0.07

W2-L 0.42 0.12 0.079 0.054

W3-U 0.50 0.11 0.113 0.2

W3-L 0.39 0.12 0.065 0.05

W4 0.57 0.18 0.035 0.072

W5-U 0.52 0.16 0.074 0.076

W5-L 0.44 0.11 0.038 0.078

R1-U 0.49 0.18 0.053 0.049

R1-L 0.45 0.11 0.049 0.106

R5 0.46 0.10 0.052 0.039

Overall 0.063 0.079

4.4 Statistical analyses of sea ice topography

Studies on sea ice topography in the Arctic have extensively examined the applicability of statistical distributions such as the

log-normal distribution (Landy et al., 2020; Duncan and Farrell, 2022) and the exponentially modified normal (exp-normal)

distribution (Yi et al., 2022). However, there remains a gap in understanding the most suitable distribution models for describing

the elevation of Antarctic sea ice. We aim to address this gap by evaluating three distribution models: Gaussian, log-normal, and320

exp-normal, to determine the most appropriate probability density function (PDF) for describing the sea-ice elevation across

segments.

The PDF of the Gaussian distribution with mean µg and standard deviation σg is defined as:

G(x) =
1√
2πσ2

g

e
− (x−µg)2

2σ2
g (9)

The PDF of the log-normal distribution with mean e(µl+σl
2/2) and variance e2µl+σ2

l

(
eσ2

l − 1
)

follows (Gaddum, 1945):325

LG(x) =
1

xσl

√
2π

e
− (ln(x)−µl)

2

2σ2
l (10)

The PDF of the exp-normal distribution with mean µe +1/λ and variance σ2
e +1/λ2 is given as (Foley and Dorsey, 1984):

EMG(x) =
λ

2
e

λ
2 (2µe+λσ2

e−2x)erfc(
µe + λσ2

e −x√
2σe

) (11)
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where the erfc(·) is the complementary error function with erfc(x) = 2√
π

∫∞
x

e−t2 dt.

The observed and modeled distributions of sea ice elevation over each segment are depicted in the left column of Fig. 16(c).330

The observed distributions of all segments exhibit asymmetrical with longer tails. A closer examination of the tail regions

(right column in Fig. 16(c)) reveals significant deviations from the Gaussian distribution, particularly in segments W1-U and

W2-U, which are covered by deformed and thicker sea ice. The observed non-Gaussian nature of sea ice elevation distribution

aligns with the previous studies (Hughes, 1991; Davis and Wadhams, 1995; Castellani et al., 2014; Landy et al., 2019; Huang

et al., 2021). To quantitatively evaluate the fit of non-Gaussian distributions (i.e., log-normal and exp-normal) to the observed335

elevations, we employ the Kolmogorov-Smirnov (KS) test (Massey Jr, 1951). This test measures the goodness of fitting by

calculating the distance between the observed distribution function and the theoretical cumulative distribution function. The

values of the KS test are given in Table 3, where a lower value indicates a better fit.

In the northwestern Weddell Sea, where the segments (W1-U, W2-U, W3-U, W4-U, and W5-U) have average elevations

greater than 0.5m, the exp-normal distribution demonstrates superior fitting performance, as evidenced by smaller KS values.340

This can be attributed to the exp-normal distribution’s incorporation of an exponential component, which enables a better fit to

data with heavy or long tails compared to the log-normal distribution. Consequently, the exp-normal distribution is better suited

for characterizing the statistics of older and thicker sea ice, which often involves strong deformation and exhibits significant

elevations.

In the southern Weddell Sea and the Ross Sea, segments average below 0.5m in elevation, with varying fits between exp-345

normal and log-normal distributions. The log-normal distribution exhibits a better fit for W1-L, W2-L, W3-L, R1-U, and R5,

while the exp-normal distribution is more appropriate for W5-L and R1-L. This observation suggests that the two distributions

perform comparably in characterizing the elevations of younger and thinner sea ice.

Evaluating the overall performance across all segments, the exp-normal distribution outperforms the log-normal distribution,

as indicated by a smaller average KS value of 0.063.350

5 Conclusions

In this study, we proposed a novel two-step approach integrating machine learning and polarimetric-interferometry techniques

to retrieve sea ice elevation from dual-pol single-pass InSAR images, taking into account the variations in penetration bias

over different ice classes. Initially, a random forest classifier was employed to categorize sea ice (i.e, YI and OI) based on

microwaves’ penetration. Subsequently, the standard InSAR processing technique was applied to retrieve the elevation over YI355

regions, where the penetration depth is negligible. For OI regions, an inversion algorithm for the TLPV model was developed.

This algorithm can effectively compensate for the radar penetration bias into snow and ice, achieving an accurate sea ice DEM

(i.e., snow freeboard). Utilizing the OTASC dataset, which spans an area of 200×19km, the efficiency of the proposed method

was validated with an RMSE of 0.26m.

The proposed approach was applied to a broad area in Antarctica. Overall, sea ice in the northwestern Weddell Sea exhibits360

higher average elevations (> 0.5m) than the southeastern region and the Ross Sea, where the average elevations are lower
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(< 0.5m). In the northwestern Weddell Sea, sea ice experiences substantial deformation near the eastern AP, followed by a

pronounced decline in both elevation and roughness within a range of 0− 200km. Subsequently, there is a gradual increase

in these parameters as one moves southward. In the southeastern Weddell Sea, the sea ice elevation and roughness generally

decrease towards the south as they approach Coats Land. In the Western Ross Sea, thicker and rougher ice was observed near365

Terra Nova Bay, while thinner ice was found in the southeastern area near McMurdo Sound. In the Eastern Ross Sea, the stable

sea ice elevation aligns with the prevalent presence of FYI, but roughness decreases towards the southeastern. These findings

emphasize that topographic mapping can enhance ice category delineation, providing an in-depth understanding of sea ice

characteristics.

Furthermore, the statistical analyses of sea ice elevation confirmed its non-Gaussian distribution. The results further sug-370

gested that the exp-normal distribution outperforms the log-normal distribution in fitting the elevations of regions with an

average elevation greater than 0.5m, particularly for older and thicker sea ice, whereas both distributions perform comparably

for regions with an average elevation lower than 0.5m.

Future studies involve linking the derived sea ice topographic characteristics associated with oceanographic factors (ocean

current and bathymetry) and climatology parameters (wind and temperature). We aim to further advance our comprehension375

of sea ice dynamics and evolution in Antarctica.
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